Какова плотность материала поплавка? (10 ноября 2012)

Однородный цилиндрический поплавок погружают в воду так, что его верхний торец опускается до уровня поверхности воды. Затем его отпускают, и он выпрыгивает таким образом, что его нижний торец поднимается до уровня поверхности воды. Какова плотность материала поплавка? Сопротивлением воды и воздуха при движении поплавка пренебречь.

Задачу дал учитель.

Рассмотрите работу силы Архимеда по изменению потенциальной энергии бруска и состояние плавания бруска.
Это жёсткое интегрирование.
Я думаю, что плотность поплавка должна быть равна половине плотности жидкости. Математически не пробовал, а путём рассуждений пришёл к такому выводу. Если поплавок будет плавать, как айсберг, т.е. большая его часть будет погружена в жидкость, то в этом случае он вообще никогда полностью не всплывёт на поверхность. Если над водой выступает большая часть объёма, то он должен выпрыгнуть над поверхностью, а вот если он погружён на половину своего объёма, то тогда должен выйти на ту часть объёма дополнительно, на которую его принудительно погрузили (если, конечно, не учитывать сил сопротивления трения и вязкости).

Одним словом — принцип маятника. На какую величину его отклонили, на такую он и должен отклониться в обратную сторону при первом колебании.

Зачем жесткое интегрирование?

Работа силы Архимеда:

FAcph = mgh,

так как сила Архимеда убывает линейно с высотой цилиндра, то FAcp = FA / 2.

Тогда:

ρвgShh / 2 = ρShgh,

откуда

ρв / 2 = ρ.

Получается, так всегда: если не знаешь, как выразить что-то, зная, что оно изменяется от определённого значения до нуля, то бери среднюю величину?
Усреднить физическую величину можно только в случае линейной зависимости. Например, при равноускоренном движении известно, что скорость изменяется линейно от времени, тогда vcp = (v1 + v2) / 2. И т.д.